If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20d^2+11d-3=0
a = 20; b = 11; c = -3;
Δ = b2-4ac
Δ = 112-4·20·(-3)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-19}{2*20}=\frac{-30}{40} =-3/4 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+19}{2*20}=\frac{8}{40} =1/5 $
| |7x+3|+8=6 | | 77(x+4)(x+3)–77x(x+7)=12(x+7)(x+3) | | x+22÷x+15=1.2 | | -32=-5z+3=-12 | | 6y+9=45y= | | -6(3x-2)=19 | | 6x-8=4+4x | | 2(x+5=3(x-8) | | X3-5x2+11x-6=0 | | n+(n+2)=76 | | n+(n+2)=766 | | a•a•a•a=4a | | 8585=x^2-5x+35 | | 2m=74.2 | | 2x-10=16x-24 | | 4/3x-7=2x-2 | | 1/c=1/c1+1/c2+1/c3 | | 5(10x-26)=3-3(x+4) | | 35x-x^2=300 | | 65=(3.1415)•x | | b/86=49.1/72.6 | | r/15+2=4 | | 7(x+2)-(6x-5)=-22 | | 12.8*(x+35.5*2)=27x | | 51-3x=6 | | 12-y=8(y-3) | | 3x+5x-10=6x+8 | | 3b+12=16 | | 3x+5(x-2)=2(3x+4) | | 14x-6=2x-6 | | 3.1x^2+x-9.6x10^-2=0 | | 5(x+4)=4x+4 |